Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
AP2(ap2(f, x), x) -> AP2(x, ap2(f, x))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(g, x)
AP2(ap2(f, x), x) -> AP2(ap2(cons, x), nil)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
AP2(ap2(f, x), x) -> AP2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
AP2(ap2(f, x), x) -> AP2(cons, x)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(ap2(foldr, g), h), xs)
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
AP2(ap2(f, x), x) -> AP2(x, ap2(f, x))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(g, x)
AP2(ap2(f, x), x) -> AP2(ap2(cons, x), nil)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
AP2(ap2(f, x), x) -> AP2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
AP2(ap2(f, x), x) -> AP2(cons, x)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(ap2(foldr, g), h), xs)
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AP2(ap2(f, x), x) -> AP2(x, ap2(f, x))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(g, x)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
AP2(ap2(f, x), x) -> AP2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(ap2(foldr, g), h), xs)
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.